A model for red blood cell motion in glycocalyx-lined capillaries.

نویسندگان

  • T W Secomb
  • R Hsu
  • A R Pries
چکیده

The interior surfaces of capillaries are lined with a layer (glycocalyx) of macromolecules bound or absorbed to the endothelium. Here, a theoretical model is used to analyze the effects of the glycocalyx on hematocrit and resistance to blood flow in capillaries. The glycocalyx is represented as a porous layer that resists penetration by red blood cells. Axisymmetric red blood cell shapes are assumed, and effects of cell membrane shear elasticity are included. Lubrication theory is used to compute the flow of plasma around the cell and within the glycocalyx. The effects of the glycocalyx on tube hematocrit (Fahraeus effect) and on flow resistance are predicted as functions of the width and hydraulic resistivity of the layer. A layer of width 1 micron and resistivity 10(8) dyn.s/cm4 leads to a relative apparent viscosity of approximately 10 in a 6-micron capillary at discharge hematocrit 45% and flow velocity of approximately 1 mm/s. This is consistent with experimental observations of increased flow resistance in microvessels in vivo, relative to glass tubes with the same diameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Analysis of MHD Flow of Blood in Very Narrow Capillaries (RESEARCH NOTE)

A mathematical model for blood flow in narrow capillaries under the effect of transverse magnetic field has been investigated. It is assumed that there is a lubricating layer between red blood cells and tube wall. The transient flow of the fit red blood cell surrounded by plasma annulus in the narrow capillary is considered. The analysis of fluid flow between red cell and tube wall, when the ce...

متن کامل

A Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries

This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...

متن کامل

Effect of Glycocalyx on Red Blood Cell Motion in Capillary Surrounded by Tissue

The aim of the paper is to develop a simple model for capillary tissue fluid exchange system to study the effect of glycocalyx layer on the single file flow of red cells. We have considered the channel version of an idealized Krogh capillary-tissue exchange system. The glycocalyx and the tissue are represented as porous layers with different property parametric values. Hydrodynamic Lubrication ...

متن کامل

Effects of the Esl on Stresses Experienced by Endothelial Cells

INTRODUCTION A large body of experimental evidence shows that the endothelial surfaces of microvessels are lined with a relatively thick layer of macromolecules, which has a substantial impact on the mechanics and hemodynamics of blood flow [1]. This layer, known as the glycocalyx or endothelial surface layer (ESL), has been estimated to be from 0.3 μm to more than 1 μm thick. Its hemodynamic e...

متن کامل

Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx.

The endothelial glycocalyx is a dynamic extracellular matrix composed of cell surface proteoglycans, glycoproteins, and adsorbed serum proteins that has been implicated in the regulation and modulation of capillary tube hematocrit, permeability, and hemostasis. High tissue adenosine levels have been shown to adversely affect microvascular function and tissue survival after an ischemic episode, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 274 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1998